Structural Characterization of Micromechanical Properties in Asphalt Using Atomic Force Microscopy
نویسندگان
چکیده
منابع مشابه
Recent advances in micromechanical characterization of polymer, biomaterial, and cell surfaces with atomic force microscopy
متن کامل
Atomic Force Microscopy Application in Biological Research: A Review Study
Atomic force microscopy (AFM) is a three-dimensional topographic technique with a high atomic resolution to measure surface roughness. AFM is a kind of scanning probe microscope, and its near-field technique is based on the interaction between a sharp tip and the atoms of the sample surface. There are several methods and many ways to modify the tip of the AFM to investigate surface properties, ...
متن کاملDepth-Dependent Anisotropy of the Micromechanical Properties of Porcine Articular Cartilage Measured via Atomic Force Microscopy
INTRODUCTION: Articular cartilage exhibits distinct differences in biochemical composition [1] and structure [2] of the extracellular matrix (ECM) with distance from the articular surface. These differences result in depth-dependent biomechanical properties [3, 4, 5] that can have a significant effect on the mechanical environment of the chondrocyte [6, 7]. An additional structural component of...
متن کاملUltra structural characteristics of methicillin resistant Staphylococcus aureus cell wall after affecting with lytic bacteriophages using atomic force microscopy
Objective(s): During the last years with increasing resistant bacteria to the most antibiotics bacteriophages are suggested as appropriate treatment option. To investigate lytic activity of bacteriophages there are indirect microbial procedures and direct methods. The present study to complement microbial procedures and investigate ultra-structural characteristics of infection bacterium-phage u...
متن کاملMicro-Mechanical Characterization of Lung Tissue Using Atomic Force Microscopy
Matrix stiffness strongly influences growth, differentiation and function of adherent cells. On the macro scale the stiffness of tissues and organs within the human body span several orders of magnitude. Much less is known about how stiffness varies spatially within tissues, and what the scope and spatial scale of stiffness changes are in disease processes that result in tissue remodeling. To b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Materials in Civil Engineering
سال: 2012
ISSN: 0899-1561,1943-5533
DOI: 10.1061/(asce)mt.1943-5533.0000510